资源类型

期刊论文 494

会议视频 7

年份

2024 2

2023 44

2022 41

2021 49

2020 29

2019 25

2018 33

2017 27

2016 14

2015 18

2014 21

2013 18

2012 20

2011 18

2010 18

2009 23

2008 35

2007 26

2006 6

2005 5

展开 ︾

关键词

碳中和 3

三相界面 2

双极板 2

城市河流 2

数值模拟 2

肥胖 2

2-羟基丁酸 1

2035 1

ADV 1

Beclin-1 1

CCUS 1

CFD 1

CO2利用 1

COVID-19 1

CP);符号间干扰(inter symbol interference, ISI);载波间干扰(inter carrier interference 1

Cas12a 1

Chebyshev多项式 1

Colebrook隐式方程 1

Cu(Inx 1

展开 ︾

检索范围:

排序: 展示方式:

Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1697-x

摘要:

● Titanium-based flow-through electrode achieved high Cr(VI) reduction efficiency.

关键词: Flow-through electrode     Hexavalent chromium     Heavy metals     Neural network     Artificial intelligence    

Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor

Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 252-257 doi: 10.1007/s11705-010-1010-y

摘要: Xylan of corn stover was pretreated with 1%, 2% and 3% (w/w) sulfuric acid at relatively low temperatures (90°C, 95°C and 100°C) in a dilute acid cycle spray flow-through reactor (DCF). The hydrolysis of xylan to its monomeric xylose was modeled by a series of first-order reactions. Both biphasic and Saeman hydrolysis models were applied to fit the experimental data. The results confirmed that the kinetic data of xylan hydrolysis fitted a first-order irreversible reaction model and the experimental data. The reaction rates of xylose monomer formation and degradation were sensitive to catalyst concentration and temperature. Higher catalyst concentration and lower reaction temperature result in high xylose yield. The activation energy for xylose formation and degradation were determined to be 112.9 and 101.0 kJ·mol , respectively. Over 90% theoretical xylose obtained from corn stover can be used to produce ethanol, xylitol and fumaric acid by fermentation.

关键词: corn stover     xylan hydrolysis     biphasic model     Saeman model     cycle spray     kinetics    

Mass Transfer-Promoted Fe2+/Fe3+ Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable

Weiyang Lv,Hao Li,Jinhui Wang,Lixin Wang,Zenglong Wu,Yuge Wang,Wenkai Song,Wenkai Cheng,Yuyuan Yao,

《工程(英文)》 doi: 10.1016/j.eng.2023.06.010

摘要: Realizing fast and continuous generation of reactive oxygen species (ROSs) via iron-based advanced oxidation processes (AOPs) is significant in the environmental and biological fields. However, current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect, giving rise to the sluggish Fe2+/Fe3+ cycle and low dynamic concentration of Fe2+ for ROS production. Herein, we present a three-dimensional (3D) macroscale co-catalyst functionalized with MoS2 to achieve ultra-efficient Fe2+ regeneration (equilibrium Fe2+ ratio of 82.4%) and remarkable stability (more than 20 cycles) via a circulating flow-through process. Unlike the conventional batch-type reactor, experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode, initiated by the convection-enhanced mass/charge transfer for Fe2+ reduction and then strengthened by MoS2-induced flow rotation for sufficient reactant mixing, is crucial for oxidant activation and subsequent ROS generation. Strikingly, the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency. Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology, especially in large-scale complex wastewater treatment.

关键词: Advanced oxidation processes     3D co-catalyst     Flow-through mode     Enhanced mass transfer     Complex wastewater treatment    

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1800-y

摘要:

● A spindle-shaped influent chamber was designed and equipped in FCDI system.

关键词: Spindle-shaped chamber     Desalination performance     Flow electrode capacitive deionization    

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1440-1449 doi: 10.1007/s11705-023-2333-9

摘要: The composite electrode of CoNiSx and Ti3C2Tx MXene was successfully prepared using a one-step hydrothermal method under the in-situ doping of the cobalt element. The effects of in-situ doping of the cobalt element on the micromorphology and electrochemical performance of the electrodes were investigated. After in-situ doping of the cobalt element, NiS with a needle-like structure was converted into a CoNiSx with petal-like structure. The petal-like CoNiSx with a rough surface was very dense and evenly wrapped on the surface and interlamination of Ti3C2Tx, which helped increase the specific surface area and pore volume of the electrode. Under the identical test conditions, CoNiSx@Ti3C2Tx had a higher specific capacitance and capacitance retention than NiS@Ti3C2Tx. This result indicated that the in-situ doping of the cobalt element promoted the electrochemical performance of the electrode. The energy density of the CoNiSx@Ti3C2Tx/nickel foam (NF)//activated carbon (AC)/NF asymmetric supercapacitor device was 59.20 Wh·kg–1 at a power density of 826.73 W·kg–1, which was much higher than that of NiS@Ti3C2Tx/NF//AC/NF. Three CoNiSx@Ti3C2Tx/NF//AC/NF in series were able to illuminate the light emitting diode lamp for about 10 min, which was higher than the 5 min of three NiS@Ti3C2Tx/NF//AC/NF in series under the same condition. The CoNiSx@Ti3C2Tx/NF//AC/NF with high energy density had better application potential in energy storage than the NiS@Ti3C2Tx/NF//AC/NF.

关键词: MXene     supercapacitor     cobalt doping     structure characterization     electrochemical performance    

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1427-1443 doi: 10.1007/s11705-021-2108-0

摘要: The dye industry produces a large amount of hazardous wastewater every day worldwide, which brings potential threaten to the global environment. As an excellent method for removal of water chroma and chemical oxygen demand, electrocatalytic methods are currently widely used in the treatment of dye wastewater. The selection and preparation of electrode materials and electrocatalysts play an important role on the electrocatalytic treatment. The aim of this paper is to introduce the most excellent high-efficiency electrode materials and electrocatalysts in the field of dye wastewater treatment. Many electrode materials such as metal electrode materials, boron-doped diamond anode materials and three-dimensional electrode are introduced in detail. Besides, the mechanism of electrocatalytic oxidation is summarized. The composite treatment of active electrode and electrocatalyst are extensively examined. Finally, the progress of photo-assisted electrocatalytic methods of dye wastewater and the catalysts are described.

关键词: electrocatalytic oxidation     electrode     electrocatalysis     dye wastewater    

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 412-417 doi: 10.1007/s11465-010-0114-x

摘要: The behaviors of electrode displacement and force during spot welding under various conditions, such as different weld currents, electrode forces, and welding times, were studied. Tests were conducted on a 170?kVA MFDC spot welder. Data were collected via a multichannel high-speed data acquisition system and were analyzed with MATLAB. Behaviors of 5182 aluminum and mild steel in spot welding were compared. Results show that nugget expansion rate does not reach zero for aluminium as it does for mild steel as nugget grew to a certain size. A linear relationship is found between the nugget size and maximum expansion that facilitates online weld quality evaluation. An electrode force peak is observed and believed relevant to the sufficient nugget size.

关键词: aluminum     electrode displacement     electrode force     nugget size     data acquisition    

通过一个等价雷诺数揭示层流到湍流的转捩区域 Article

陈晓东

《工程(英文)》 2019年 第5卷 第3期   页码 576-579 doi: 10.1016/j.eng.2018.09.013

摘要:

Flow transition from laminar to turbulent mode (and vice versa)—that is, the initiation of turbulence—is one of the most important research subjects in the history of engineering. Even for pipe flow, predicting the onset of turbulence requires sophisticated instrumentation and/or direct numerical simulation, based on observing the instantaneous flow structure formation and evolution. In this work, a local Reynolds number equivalence γ (ratio of local inertia effect to viscous effect) is seen to conform to the Universal Law of the Wall, where γ = 1 represents a quantitative balance between the abovementioned two effects. This coincides with the wall layer thickness (y+ = 1, where y+ is the dimensionless distance from the wall surface defined in the Universal Law of the Wall). It is found that the characteristic of how the local derivative of γ against the local velocity changes with increasing velocity determines the onset of turbulence. For pipe flow, γ  25, and for plate flow, γ 151.5. These findings suggest that a certain combination of γ and velocity (nonlinearity) can qualify the source of turbulence (i.e., generate turbulent energy). Similarly, a re-evaluation of the previous findings reveals that only the geometrically narrow domain can act locally as the source of turbulence, with the rest of the flow field largely being left for transporting and dissipating. This understanding will have an impact on the future large-scale modeling of turbulence.

关键词: 局部等价雷诺数     转捩     壁面律     管流     平板流动     建模    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 399-409 doi: 10.1007/s11705-020-1934-9

摘要: Description of electrolyte fluid dynamics in the electrode compartments by mathematical models can be a powerful tool in the development of redox flow batteries (RFBs) and other electrochemical reactors. In order to determine their predictive capability, turbulent Reynolds-averaged Navier-Stokes (RANS) and free flow plus porous media (Brinkman) models were applied to compute local fluid velocities taking place in a rectangular channel electrochemical flow cell used as the positive half-cell of a cerium-based RFB for laboratory studies. Two different platinized titanium electrodes were considered, a plate plus a turbulence promoter and an expanded metal mesh. Calculated pressure drop was validated against experimental data obtained with typical cerium electrolytes. It was found that the pressure drop values were better described by the RANS approach, whereas the validity of Brinkman equations was strongly dependent on porosity and permeability values of the porous media.

关键词: CFD simulation     porous media     porous electrode     pressure drop     redox flow battery    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1065-1074 doi: 10.1007/s11705-023-2313-0

摘要: Lignocellulosic biomass such as plants and agricultural waste are ideal to tackle the current energy crisis and energy-related environmental issues. Carbon-rich lignin is abundant in lignocellulosic biomass, whose high-value transformation and utilization has been the most urgent problem to be solved. Herein, we propose a method for the preparation of porous carbon from lignin employing an H3PO4-assisted hydrothermal method. We characterize the as-prepared lignin-derived porous carbon and investigate its potential for energy storage. After assisted hydrothermal treatment followed by carbonization at 800 °C, the lignin-derived porous carbon displays a high specific capacitance (223.6 F·g–1 at 0.1 A·g–1) and excellent cycling ability with good capacitance retention. In this present study, the resultant lignin-derived porous carbon was used as the electrode of a supercapacitor, illustrating yet another potential high-value use for lignin, namely as a candidate for the sustainable fabrication of main supercapacitor components.

关键词: lignin     porous carbon     electrode     supercapacitor    

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

《能源前沿(英文)》 2010年 第4卷 第4期   页码 496-506 doi: 10.1007/s11708-010-0020-2

摘要: A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

关键词: convective transport     heat transfer     mass transfer     laminar flow     thermal boundary effects    

Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant

Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou

《环境科学与工程前沿(英文)》 2021年 第15卷 第4期 doi: 10.1007/s11783-020-1345-7

摘要: Abstract • Electrode fouling is characterized by non-destructive characterization. • Electrode fouling is highly dependent on electrochemical process. • Active chlorine can prevent the formation of polymeric fouling film. Electrode fouling is a problem that commonly occurs during electro-oxidation water purification. This study focused on identifying the fouling behavior of Pt electrode associated with the formation of polymeric layer during electro-oxidation of phenol. The in situ electrochemical measurements and non-destructive observation of the electrode morphology were reported. The results demonstrated that the electrode fouling was highly dependent on thermodynamic process of electrode that was controlled by anode potential. At anode potential lower than 1.0 V vs SHE, the direct electro-oxidation caused the electrode fouling by the formation of polymeric film. The fouling layer decreased the electrochemically active surface area from 8.38 cm2 to 1.57 cm2, indicated by the formation of polymeric film with thickness of 2.3 mm, increase in mass growing at a rate of 3.26 μg/cm2/min. The degree to which the anode was fouled was independent of anion in the electrolyte. In comparison, at anode potential higher than 2.7 V vs SHE, the anions (e.g., chloride) could exert a major influence to the behavior of electrode fouling. The presence of chloride was shown to mitigate the fouling of electrode significantly through preventing the formation of polymeric film by active chlorine (e.g., Cl• and Cl2) produced from anodic oxidation of chloride. Since chloride is the most abundant anionic species existing in both natural and engineered water system, this study not only offers a deep insight into the mechanism of electrode fouling, but also suggests strategies for anti-fouling in the presence of chloride in electro-oxidation process.

关键词: Electro-oxidation     Electrode fouling     Polymeric film     Chloride ions    

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD

《能源前沿(英文)》 2019年 第13卷 第4期   页码 770-797 doi: 10.1007/s11708-019-0651-x

摘要: Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

关键词: double perovskites     electrode materials     hydrocarbon fuel     solid oxide fuel cells    

标题 作者 时间 类型 操作

Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent

期刊论文

Kinetic studies of xylan hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor

Hongman ZHANG, Qiang JIN, Rui XU, Lishi YAN, Zengxiang LIN

期刊论文

Mass Transfer-Promoted Fe2+/Fe3+ Circulation Steered by 3D Flow-Through Co-Catalyst System Toward Sustainable

Weiyang Lv,Hao Li,Jinhui Wang,Lixin Wang,Zenglong Wu,Yuge Wang,Wenkai Song,Wenkai Cheng,Yuyuan Yao,

期刊论文

A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber

期刊论文

Enhanced electrochemical performance of CoNiS@TiCT electrode material through doping of cobalt element

期刊论文

Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater

期刊论文

Quality control based on electrode displacement and force in resistance spot welding

Chuntao JI, Lipeng DENG

期刊论文

通过一个等价雷诺数揭示层流到湍流的转捩区域

陈晓东

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

Pressure drop analysis on the positive half-cell of a cerium redox flow battery using computational fluid

Fernando F. Rivera, Berenice Miranda-Alcántara, Germán Orozco, Carlos Ponce de León, Luis F. Arenas

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

Fabricating sustainable lignin-derived porous carbon as electrode for high-performance supercapacitors

期刊论文

A way to explain the thermal boundary effects on laminar convection through a square duct

Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU

期刊论文

Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant

Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou

期刊论文

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD

期刊论文